Question: What is the value of $ [1^{2}-2^{2}+3^{3}-4^{2}+5^{2}-6^{2}+…+11^{2}-12^{2}]? $
Options:
A) 55
B) $ -78 $
C) $ -,55 $
D) 78
Show Answer
Answer:
Correct Answer: B
Solution:
- $ [1^{2}-2^{2}+3^{2}-4^{2}+5^{2}-6^{2}+….+11^{2}-12^{2}] $
$ =[(1+2)(1-2)+(3+4)(3-4)+(5+6) $
$ (5-6)+…+(11+12)(11-12)] $
$ =[3\times -1+7\times -1+11\times -1+…+23\times -1] $
$ =[-,3-7-11-….-23] $
This series is in AP with first term $ =-,3 $
and last term $ =-,23 $
$ \because $ $ l=a+(n-1),d $
$ -,23=-,3+(n-1)\times -,4 $
$ \Rightarrow $ $ -,23=-,3-4n+4 $
$ \Rightarrow $ $ 4n=24 $
$ \Rightarrow $ $ n=6 $
$ \therefore $ Sum $ =\frac{6}{2}(-,3-23)=6\times -13=-78 $
Alternate Method
We can do it directly as,
$ [-,3-7-11-15-19-23]=-78 $