Quantitative Aptitude Ques 2402

Question: Find out the value of $ \frac{1}{\sqrt{9}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}} $ $ -\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{4}} $

Options:

A) 0

B) 5

C) 7

D) 8

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ \frac{1}{\sqrt{9}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}} $ $ -\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{4}} $

$ \therefore $ $ \frac{1}{\sqrt{9}-\sqrt{8}}\times \frac{(\sqrt{9}+\sqrt{8})}{(\sqrt{9}+\sqrt{8})}=\frac{\sqrt{9}+\sqrt{8}}{9-8}=\sqrt{9}+\sqrt{8} $ Similarly, $ \frac{1}{\sqrt{8}-\sqrt{7}}=\sqrt{8}+\sqrt{7}; $ $ \frac{1}{\sqrt{7}-\sqrt{6}}=\sqrt{7}+\sqrt{6} $ $ \frac{1}{\sqrt{6}-\sqrt{5}}=\sqrt{6}+\sqrt{5} $ and $ \frac{1}{\sqrt{5}-\sqrt{4}}=\sqrt{5}+\sqrt{4} $

$ \therefore $ Above given expression can be written as, $ \sqrt{9}+\sqrt{8}-(\sqrt{8}+\sqrt{7})+(\sqrt{7}+\sqrt{6}) $ $ -(\sqrt{6}+\sqrt{5})+(\sqrt{5}+\sqrt{4}) $

$ \Rightarrow $ $ \sqrt{9}+\sqrt{8}-\sqrt{8}-\sqrt{7}+\sqrt{7}+\sqrt{6}-\sqrt{6}-\sqrt{5}+\sqrt{5}+\sqrt{4} $

$ \Rightarrow $ $ \sqrt{9}+\sqrt{4}=3+2=5 $