Quantitative Aptitude Ques 2401
Question: If $ a={{(\sqrt{2}+1)}^{-1/3}}, $ then find out the value of $ ( a^{3}-\frac{1}{a^{3}} ). $
Options:
A) 0
B) $ -2\sqrt{2} $
C) $ 3\sqrt{2} $
D) $ -2 $
Show Answer
Answer:
Correct Answer: D
Solution:
- $ a={{(\sqrt{2}+1)}^{-1/3}} $
$ \Rightarrow $ $ a={{( \frac{1}{\sqrt{2}+1} )}^{1/3}} $
$ a^{3}=\frac{1}{\sqrt{2}+1}=\frac{1}{\sqrt{2}+1}\times \frac{(\sqrt{2}-1)}{(\sqrt{2}+1)}=\frac{\sqrt{2}-1}{1}=\sqrt{2}-1 $
$ \therefore $ $ \frac{1}{a^{3}}=\frac{1}{\sqrt{2}-1}\times \frac{\sqrt{2}+1}{\sqrt{2}+1}=\sqrt{2}+1 $
So, $ a^{3}-\frac{1}{a^{3}}=\sqrt{2}-1-(\sqrt{2}+1) $
$ =\sqrt{2}-1-\sqrt{2}-1=-,2 $