Quantitative Aptitude Ques 2393
Question: The distance between the lines $ 4x+3y=11 $ and $ 8x+6y=15 $ is
Options:
A) 4
B) $ \frac{7}{10} $
C) $ \frac{5}{7} $
D) 26
Show Answer
Answer:
Correct Answer: B
Solution:
- $ 4x+3y=11 $ …(i)
$ 8x+6y=15\Rightarrow 4x+3y=\frac{15}{2} $ … (ii)
Since, Eqs. (i) and (ii) are equations of parallel lines in the form of $ ax+by+c _1=0 $ and $ ax+by+{c_2}=0 $
Hence, distance between them d
$ =\frac{| c _2-c _1 |}{\sqrt{a^{2}+b^{2}}}=\frac{| \frac{15}{2}-11 |}{\sqrt{{{(4)}^{2}}+{{(3)}^{2}}}}=\frac{3.5}{5}=\frac{7}{10} $