Quantitative Aptitude Ques 2393

Question: The distance between the lines $ 4x+3y=11 $ and $ 8x+6y=15 $ is

Options:

A) 4

B) $ \frac{7}{10} $

C) $ \frac{5}{7} $

D) 26

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ 4x+3y=11 $ …(i) $ 8x+6y=15\Rightarrow 4x+3y=\frac{15}{2} $ … (ii) Since, Eqs. (i) and (ii) are equations of parallel lines in the form of $ ax+by+c _1=0 $ and $ ax+by+{c_2}=0 $ Hence, distance between them d $ =\frac{| c _2-c _1 |}{\sqrt{a^{2}+b^{2}}}=\frac{| \frac{15}{2}-11 |}{\sqrt{{{(4)}^{2}}+{{(3)}^{2}}}}=\frac{3.5}{5}=\frac{7}{10} $