Quantitative Aptitude Ques 2373

Question: Four circles having equal radii are drawn with centres at the four corners of a square. Each circle touches the other two adjacent circles. If the remaining area of the square is $ 168cm^{2}, $ then what is the size of the radius of the circle?

[IBPS RRB (Assistant Officers) 2015]

Options:

A) 14 cm

B) 1.4 cm

C) 35 cm

D) 21 cm

E) 3.5 cm

Show Answer

Answer:

Correct Answer: A

Solution:

  • Let the radius of the circle be r cm.

$ \therefore $ Side of square will be 2r cm. Area covered by circles in the square $ =4\times \frac{1}{4}\pi r^{2}=\pi r^{2}cm^{2} $ Area of square $ ={{(2r)}^{2}}=4r^{2}cm^{2} $

$ \therefore $ Remaining area of square $ =4r^{2}-\pi r^{2} $

$ \Rightarrow $ $ 168=r^{2}( 4-\frac{22}{7} ) $

$ \Rightarrow $ $ 168=r^{2}( \frac{28-22}{7} )=\frac{6r^{2}}{7} $

$ \Rightarrow $ $ r^{2}=\frac{168\times 7}{6} $
$ \Rightarrow $ $ r^{2}=196 $

$ \Rightarrow $ $ r=14,cm $