Quantitative Aptitude Ques 237

Question: The length of the shadow is increased by 10 m on ground level of vertical building when the angle of elevation is changed from $ 45{}^\circ $ to $ 30{}^\circ . $ Find the height of the building.

Options:

A) $ 5,(\sqrt{3}+1),m $

B) $ 5,(\sqrt{3}-1),m $

C) $ 5\sqrt{3},m $

D) $ \frac{5}{\sqrt{3}},m $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Let AB be the building and height of building be h m. Now, in $ \Delta ABC, $ $ \tan 45{}^\circ =\frac{AB}{BC}=\frac{h}{x} $
    $ \Rightarrow $ $ 1=\frac{h}{x} $

$ \Rightarrow $ $ h=x $ … (i) Again in $ \Delta ABD, $ $ \tan 30{}^\circ =\frac{AB}{BD}=\frac{h}{x+10} $ $ \frac{1}{\sqrt{3}}=\frac{h}{x+10} $
$ \Rightarrow $ $ h\sqrt{3}=x+10 $

$ \Rightarrow $ $ h\sqrt{3}=h+10 $ [from Eq.(i)]

$ \Rightarrow $ $ h\sqrt{3}-h=10 $

$ \Rightarrow $ $ h,(\sqrt{3}-1)=10 $
$ \Rightarrow $ $ h=\frac{10}{(\sqrt{3}-1)} $

$ \Rightarrow $ $ h=\frac{10(\sqrt{3}+1)}{{{(\sqrt{3})}^{2}}-{{(1)}^{2}}}=\frac{10(\sqrt{3}+1)}{2} $

$ \Rightarrow $ $ h=5,(\sqrt{3}+1) $