Quantitative Aptitude Ques 2364

Question: The sum of 8 consecutive odd numbers is 656. Also, average of four consecutive even number is 87. What is the sum of the smallest odd number and second largest even number?

Options:

A) 165

B) 175

C) 163

D) Cannot be determined

E) None of the above

Show Answer

Answer:

Correct Answer: C

Solution:

  • Let the 8 consecutive odd numbers be $ x, $ $ x+2, $ $ x+4, $ $ x+6, $ $ x+8, $ $ x+10, $ $ x+12 $ and $ x+14, $ respectively. Then, $ x+(x+2)+(x+4)+(x+6)+(x+8) $ $ +,(x+10)+(x+12)+(x+14)=656 $

$ \Rightarrow $ $ 8x+56=656 $

$ \Rightarrow $ $ x=\frac{600}{8}=75 $ Let the four consecutive even numbers be $ x, $ $ x+2, $ $ x+4, $ $ x+6, $ respectively. Then, $ x+(x+2)+(x+4)+(x+6)=4\times 87 $

$ \Rightarrow $ $ 4x+12=4\times 87 $

$ \Rightarrow $ $ 4x=348-12 $

$ \Rightarrow $ $ x=\frac{336}{4}=84 $

$ \therefore $ Second largest even number $ =x+4=84+4=88 $ Hence, the required sum $ =75+88=163 $