Quantitative Aptitude Ques 2329

Question: The area of an isosceles trapezium is 176 and the height is $ \frac{2}{11},th $ of the sum of its parallel sides. If the ratio of the length of the parallel sides is 4 : 7, then the length of a diagonal (in cm) is

Options:

A) 24

B) $ \sqrt{137} $

C) 28

D) $ 2\sqrt{137} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • Let the length of sides be 4x and 7x. Then, $ h=\frac{2}{11}(a+b) $ We have, $ \frac{1}{2}(a+b),h=176 $ Area of trapezium = 176 $ =\frac{1}{2}\times $ Height $ \times $ (sum of parallel sides) = 176 $ \frac{1}{2}(a+b)\times \frac{2}{11}(a+b)=176 $ $ {{(a+b)}^{2}}=176\times 11 $ $ a+b=44 $ $ 4x+7x=44 $
    $ \Rightarrow $ $ x=4 $ Sides $ =4x=16cm $ and $ 7x=28cm $ $ h=\frac{2}{11}\text{(16+28)}=8cm $ Now, $ AE=6cm $ and $ DE=8cm $ $ AD=\sqrt{8^{2}+6^{2}}=10,cm $ Diagonal, $ AC=\sqrt{AF^{2}+CF^{2}} $ $ [\because CF\bot AB] $ $ =\sqrt{{{(a+6)}^{2}}+8^{2}} $ $ =\sqrt{22^{2}+8^{2}} $ $ [\because ,a=16] $ $ =\sqrt{484+64}=\sqrt{548} $ $ =2\sqrt{137},cm $