Quantitative Aptitude Ques 2319

Question: A student goes to school at the rate of $ 2\frac{1}{2}km/h $ and reaches 6 min late. If he travels at the speed of 3 km/h, he is 10 min early. The distance (in km) between the school and his house is

Options:

A) 5

B) 4

C) 3

D) 1

Show Answer

Answer:

Correct Answer: B

Solution:

  • Let the required distance be x km. Difference between time $ =\frac{16}{60} $ Then, $ \frac{x}{5}-\frac{x}{3}=\frac{16}{60} $
    $ \Rightarrow $ $ \frac{2x}{5}-\frac{x}{3}=\frac{4}{15} $

$ \Rightarrow $ $ \frac{6x-5x}{15}=\frac{4}{15} $ $ x=4,km $ Alternate Method Here, $ t _1=6\min , $ $ t _2=10\min , $ $ S _1=2\frac{1}{2}=\frac{5}{2}km/h $ and $ S _2=3,km/h $ Distance $ =\frac{(t _1+t _2)S _1S _2}{(S _2-S _1)\times 60}=\frac{(6+10)\times \frac{5}{2}\times 3}{( 3-\frac{5}{2} )\times 60} $ $ =\frac{\frac{16\times 15}{2}}{\frac{1}{2}\times 60}=\frac{16\times 15}{60}=4,km $