I. $ 2x^{2}-25x+77=0 $ II. $ 2y^{2}-23y+56=0 $
A) If $ x\ge y $
B) If $ x<y $
C) If $ x>y $
D) If $ x\le y $
E) relationship between x and y cannot be determined
Correct Answer: E
$ \Rightarrow $ $ 2x^{2}-14x-11x+77=0 $
$ \Rightarrow $ $ 2x,(x-7)-11,(x-7)=0 $
$ \Rightarrow $ $ (x-7)(2x-11)=0\Rightarrow x=7, $ $ \frac{11}{2} $ II. $ 2y^{2}-23y+56=0 $
$ \Rightarrow $ $ 2y^{2}-16y-7y+56=0 $
$ \Rightarrow $ $ 2y,(y-8)-7,(y-8)=0 $
$ \Rightarrow $ $ (y-8)(2y-7)=0\Rightarrow y=8, $ $ \frac{7}{2} $ Hence, relationship between x and y cannot be determined.