Quantitative Aptitude Ques 2284

Question: In given figure, O is the centre of circle and $ AB=BC $ and $ \angle AOB=90{}^\circ , $ then $ \angle \theta $ is

Options:

A) $ 30{}^\circ $

B) $ 45{}^\circ $

C) $ 60{}^\circ $

D) None of the above

Show Answer

Answer:

Correct Answer: B

Solution:

  • AB = BC OA = OC radius OB = BO common

$ \therefore $ $ \Delta OAB\cong \Delta OCB $

$ \Rightarrow $ AC is the diameter.

$ \Rightarrow $ $ \Delta ABC $ is an isosceles right angled triangle with $ \angle B=90{}^\circ $

$ \Rightarrow $ BO is the angle bisector of $ \angle B=\theta =\frac{90{}^\circ }{2}=45{}^\circ $