Quantitative Aptitude Ques 225

Question: Directions: In each of the following questions two equations I and II are given. You have to solve both the equations and find out values of x and y and give answer.

I. $ 6x^{2}+25x+24=0 $ II. $ 12y^{2}+13y+3=0 $

Options:

A) If $ x>y $

B) If $ x\le y $

C) If $ x<y $

D) If relationship between x and y cannot be determined

E) If $ x\ge y $

Show Answer

Answer:

Correct Answer: C

Solution:

  • I. $ 6x^{2}+25x+24=0 $

$ \Rightarrow $ $ 6x^{2}+16x+9x+24=0 $ [by splitting the middle term]

$ \Rightarrow $ $ 2x,(3x+8)+3,(3x+8)=0 $

$ \Rightarrow $ $ (2x+3)(3x+8)=0 $

$ \Rightarrow $ $ x=\frac{-,3}{2} $ and $ x=\frac{-,8}{3} $ II. $ 12y^{2}+13y+3=0 $

$ \Rightarrow $ $ 12y^{2}+9y+4y+3=0 $ [by splitting the middle term]

$ \Rightarrow $ $ 3y,(4y+3)+1,(4y+3)=0 $

$ \Rightarrow $ $ (4y+3)(3y+1)=0 $

$ \Rightarrow $ $ y=\frac{-,3}{4} $ and $ y=\frac{-1}{3} $

$ \therefore $ $ x<y $