Quantitative Aptitude Ques 224

Question: Directions: In each of the following questions two equations I and II are given. You have to solve both the equations and find out values of x and y and give answer.

I. $ \frac{25}{\sqrt{(x)}}+\frac{9}{\sqrt{(x)}}=17\sqrt{(x)} $ II. $ \frac{\sqrt{(y)}}{3}+\frac{5\sqrt{(y)}}{6}=\frac{3}{\sqrt{(y)}} $

Options:

A) If $ x>y $

B) If $ x\le y $

C) If $ x<y $

D) If relationship between x and y cannot be determined

E) If $ x\ge y $

Show Answer

Answer:

Correct Answer: C

Solution:

  • I. $ \frac{25}{\sqrt{x}}+\frac{9}{\sqrt{x}}=17\sqrt{x} $

$ \Rightarrow $ $ \frac{25+9}{\sqrt{x}}=17\sqrt{x} $
$ \Rightarrow $ $ 34=17x $

$ \Rightarrow $ $ x=2 $ II. $ \frac{\sqrt{y}}{3}+\frac{5\sqrt{y}}{6}=\frac{3}{\sqrt{y}} $

$ \Rightarrow $ $ \frac{2\sqrt{y}+5\sqrt{y}}{6}=\frac{3}{\sqrt{y}} $
$ \Rightarrow $ $ \frac{7\sqrt{y}}{6}=\frac{3}{\sqrt{y}} $

$ \Rightarrow $ $ 7y=18 $
$ \Rightarrow $ $ y=\frac{18}{7} $

$ \therefore $ $ x<y $