Quantitative Aptitude Ques 2228

Question: A man decides to travel 80 km in 8 h partly by foot and partly on a bicycle. If his speed on foot is 8 km/h and on bicycle 16 km/h, then what distance would be travel on foot?

Options:

A) 20 km

B) 30 km

C) 48 km

D) 60 km

Show Answer

Answer:

Correct Answer: C

Solution:

  • Here, $ S _1=8km/h $ and $ S _2=16km/h $

$ \therefore $ $ d _1=S _1\times t _1=8t _1 $ … (i) and $ d _2=S _2\times t _2=16t _2 $ … (ii) We know that, $ t _1+t _2=8 $ … (iii) and $ d _1+d _2=80 $ (given) … (iv) From Eqs. (i) and (ii) put the value of di and da in Eq, (iv), we get $ d _1+d _2=80 $ $ 8t _1+16t _2=80 $

$ \Rightarrow $ $ 8t _1+8t _2=8t _2=80 $ $ 8(t _1+t _2)+8t _2=80 $ $ 8\times 8+8t _2=80 $ [from Eq. (iii)] $ 8t _2=80-64=16 $

$ \Rightarrow $ $ t _2=\frac{16}{8}=2h $

$ \therefore $ $ t _1=8-2=6h $ Distance travelled by foot $ =d _1=8\times 6=48km $