Quantitative Aptitude Ques 2183

Question: The speed of boat A is 2 km/h less than the speed of the boat B. The time taken by boat A to travel a distance of 20 km downstream is 30 min more than time taken by B to travel the same distance downstream. If the speed of the current is one-third of the speed of the boat A, then what is the speed of boat B? [LIC (AAO) 2014]

Options:

A) 4 km/h

B) 6 km/h

C) 12 km/h

D) 10 km/h

E) 8 km/h

Show Answer

Answer:

Correct Answer: E

Solution:

  • Let speed of boat $ B=xkm/h $ and speed of boat $ A=(x-2),km/h $

$ \therefore $ Speed of current $ =( \frac{x-2}{3} )km/h $ Now, according to the question, $ \frac{20}{(x-2)+\frac{(x-2)}{3}}=\frac{20}{x+\frac{x-2}{3}}+,\frac{30}{60} $

$ \Rightarrow $ $ \frac{20\times 3}{3x-6+x-2}=\frac{20\times 3}{3x+x-2}+\frac{1}{2} $

$ \Rightarrow $ $ \frac{60}{4x-8}-\frac{60}{4x-2}=\frac{1}{2} $
$ \Rightarrow $ $ \frac{60}{4,(x-2)}-\frac{60}{2,(2x-1)}=\frac{1}{2} $

$ \Rightarrow $ $ \frac{15}{x-2}-\frac{30}{2x-1}=\frac{1}{2} $

$ \Rightarrow $ $ \frac{30x-15-30x+60}{(x-2),(2x-1)}=\frac{1}{2} $

$ \Rightarrow $ $ \frac{45}{(x-2)(2x-1)}=\frac{1}{2} $

$ \Rightarrow $ $ (x-2)(2x-1)=90 $

$ \Rightarrow $ $ 2x^{2}-x-4x+2=90 $

$ \Rightarrow $ $ 2x^{2}-5x+2-90=0 $

$ \Rightarrow $ $ 2x^{2}-5x-88=0 $

$ \Rightarrow $ $ 2x^{2}-16x+11x-88=0 $

$ \Rightarrow $ $ 2x,(x-8)+11,(x-8)=0 $

$ \Rightarrow $ $ (x-8)(2x+11)=0 $

$ \Rightarrow $ $ 2x+11=0 $ and $ x-8=0 $

$ \Rightarrow $ $ x=-\frac{11}{2} $ and $ x=8 $ [speed cannot be negative] Speed of boat B = 8 km/ h