Quantitative Aptitude Ques 2169

Question: A wire 25 cm long is bent into the form of a rectangle of area $ 25cm^{2}. $ The length of the longer side is

Options:

A) 25 cm

B) 20 cm

C) 10 cm

D) 5 cm

Show Answer

Answer:

Correct Answer: C

Solution:

  • Perimeter of rectangle $ =2,(l+b) $

$ \Rightarrow $ $ 25=2,(l+b) $
$ \Rightarrow $ $ (l+b)=\frac{25}{2} $ … (i) Now, area of rectangle $ =l\times b $

$ \Rightarrow $ $ 25=l\times b $
$ \Rightarrow $ $ lb=25 $ … (ii) Now, $ {{(l-b)}^{2}}=(l+b^{2})-4lb $ $ ={{( \frac{25}{2} )}^{2}}-4\times 25=\frac{625}{4}-100 $ $ =\frac{625-400}{4}=\frac{225}{4} $

$ \Rightarrow $ $ l-b=\frac{15}{2} $ … (iii) On solving Eqs. (i) and (iii), we get $ l=10,cm $ and $ b=\frac{5}{2},cm $ Hence, length of longest side is 10 cm.