Question: If $ a+b+c=0, $ then find the value of
$ \frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}+\frac{1}{{{(a+b)}^{3}}}+\frac{1}{{{(b+c)}^{3}}}+\frac{1}{{{(c+a)}^{3}}}. $
Options:
A) $ -1 $
B) $ 3abc $
C) 1
D) 0
Show Answer
Answer:
Correct Answer: D
Solution:
- $ a+b+c=0 $
By putting a = 1, b = 0 and $ c=-1 $
$ =\frac{1}{{{(1)}^{3}}}+0+\frac{1}{{{(-1)}^{3}}}+\frac{1}{{{(1)}^{3}}}+\frac{1}{{{(-1)}^{3}}}+\frac{1}{(0)} $
$ =1+0-1+1-1+0=0 $