Question: A hemispherical bowl of internal radius 15 cm contains a liquid. The liquid is to be filled into cylindrical shaped bottles of diameter 5 cm and height 6 cm. How much bottles are necessary to empty the bowl?
Options:
A) 40
B) 20
C) 30
D) 60
Show Answer
Answer:
Correct Answer: D
Solution:
- Radius of hemispherical bowl $ =15,cm $
Capacity of bowl with $ r=15=\frac{2\pi r^{3}}{3} $
$ =\frac{2}{3}\times \pi \times {{(15)}^{3}}=2250\pi cm^{3} $
Radius of cylindrical bottle $ =5/2cm $
Height of cylindrical bottle $ =6cm $
Volume of cylindrical bottle $ =\pi r^{2}h $
$ =\pi \times {{(5/2)}^{2}}\times 6=\frac{75\pi }{2}cm^{3} $
$ \therefore $ Number of bottles required
$ =\frac{Capacityofbowl}{Volumeof,cylidricalbottle} $
$ =\frac{2250\pi }{\frac{75\pi }{2}}=\frac{2250\times 2}{75}=60 $