Quantitative Aptitude Ques 2145

Question: If $ \frac{a}{b}+\frac{b}{a}=1, $ then the value of $ (a^{3}+b^{3}) $ is

Options:

A) 0

B) 1

C) 2

D) 3

Show Answer

Answer:

Correct Answer: A

Solution:

  • Given, $ \frac{a}{b}+\frac{b}{a}=1 $

$ \Rightarrow $ $ \frac{a^{2}+b^{2}}{ab}=1 $

$ \Rightarrow $ $ a^{2}+b^{2}=ab $ … (i) Now, $ a^{3}+b^{3}=(a^{2}+b^{2}-ab) $ $ =(a+b)(ab-ab) $ [from Eq.(i)] $ =(a+b)\cdot 0=0 $