Quantitative Aptitude Ques 2104

Question: If $ x^{2}+y^{2}+\frac{1}{x^{2}}+\frac{1}{y^{2}}=4, $ then the value of is

Options:

A) 2

B) 4

C) 8

D) 16

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ \because $ $ x^{2}+y^{2}+\frac{1}{x^{2}}+\frac{1}{y^{2}}-4=0 $

$ \Rightarrow $ $ x^{2}+\frac{1}{x^{2}}-2+y^{2}+\frac{1}{y^{2}}-2=0 $

$ \Rightarrow $ $ {{( x-\frac{1}{x} )}^{2}}+{{( y-\frac{1}{y} )}^{2}}=0 $ If $ x-\frac{1}{x}=0 $
$ \Rightarrow $ $ x^{2}-1=0 $

$ \therefore $ $ x=1 $ Similarly $ y=1 $

$ \therefore $ $ x^{2}+y^{2}=1+1=2 $