Question: The sum of two odd numbers is 38 and their product is 325. What is three times the larger number? [IBPS (SO) 2014]
Options:
A) 42
B) 39
C) 75
D) 72
E) 78
Show Answer
Answer:
Correct Answer: C
Solution:
- Let the first odd number be x.
Then, second odd number is y.
Then, $ x+y=38 $ …(i)
and $ x\times y=325 $
$ {{(x-y)}^{2}}={{(x+y)}^{2}}-4xy $
$ ={{(38)}^{2}}-4\times 325 $
$ =1444-1300 $
$ x-y=\sqrt{144} $
or $ x-y=12 $
(ii)
On solving Eqs. (i) and (ii), we get
$ 2x=50 $
$ \Rightarrow $ $ x=25 $ and $ y=13 $
$ \therefore $ Required number $ =3\times 25=75 $
Alternate Method
We can directly do it through eliminating options as
If $ x=14 $
and $ y=24 $
Then, $ 24\times 14\ne 325 $
If $ x=13 $
and $ y=25 $
Then, $ 13\times 25=325 $
$ \therefore $ Larger number $ =25 $
$ \therefore $ Correct option is 75,
Its product is 325 but larger number is 25 here.