Quantitative Aptitude Ques 2101

Question: The sum of two odd numbers is 38 and their product is 325. What is three times the larger number? [IBPS (SO) 2014]

Options:

A) 42

B) 39

C) 75

D) 72

E) 78

Show Answer

Answer:

Correct Answer: C

Solution:

  • Let the first odd number be x. Then, second odd number is y. Then, $ x+y=38 $ …(i) and $ x\times y=325 $ $ {{(x-y)}^{2}}={{(x+y)}^{2}}-4xy $ $ ={{(38)}^{2}}-4\times 325 $ $ =1444-1300 $ $ x-y=\sqrt{144} $ or $ x-y=12 $ … (ii) On solving Eqs. (i) and (ii), we get $ 2x=50 $
    $ \Rightarrow $ $ x=25 $ and $ y=13 $

$ \therefore $ Required number $ =3\times 25=75 $ Alternate Method We can directly do it through eliminating options as If $ x=14 $ and $ y=24 $ Then, $ 24\times 14\ne 325 $ If $ x=13 $ and $ y=25 $ Then, $ 13\times 25=325 $

$ \therefore $ Larger number $ =25 $

$ \therefore $ Correct option is 75, Its product is 325 but larger number is 25 here.