Quantitative Aptitude Ques 2055
Question: If $ x+y=z, $ then the value of $ {{\cos }^{2}}x+{{\cos }^{2}}y+{{\cos }^{2}}z $ is
Options:
A) $ 1+2\sin x\sin y\sin z $
B) $ 1-2\sin x\sin y\sin z $
C) $ 1+2\cos x\cos y\cos z $
D) $ 1-2\cos x\cos y\cos z $
E) None of the above
Show Answer
Answer:
Correct Answer: C
Solution:
- Given, $ x+y=z $ Now, $ {{\cos }^{2}}x+{{\cos }^{2}}y+{{\cos }^{2}}z=? $ $ =1+({{\cos }^{2}}x-{{\sin }^{2}}y)+{{\cos }^{2}}z $ $ =(\cos x-\sin y)(\cos x+\sin y) $ $ =[ \cos x-\cos ( \frac{\pi }{2}-y ) ][ \cos x+\cos ( \frac{\pi }{2}-y ) ] $ $ =[ -2\sin \frac{( x-\frac{\pi }{2}+y )}{2}\sin \frac{( x+\frac{\pi }{2}-y )}{2} ] $ $ [ 2\cos \frac{( x+\frac{\pi }{2}-y )}{2}\cos \frac{( x-\frac{\pi }{2}+y )}{2} ] $ $ =-\sin ( x+\frac{\pi }{2}-y )\sin ( x-\frac{\pi }{2}+y ) $ $ =\cos (x-y)\cos (x+y) $ $ =1+\cos (x+y)\cdot \cos (x-y)+{{\cos }^{2}}z $ $ =1+\cos z\cos (x-y)+{{\cos }^{2}}z $ $ =1+\cos z[\cos (x-y)+cos(x+y)] $ $ =1+\cos z $ $ [ 2\cos \frac{(x-y+x+y)}{2}\cdot \cos \frac{(x-y-x-y)}{2} ] $ $ =1+2\cos z\cdot \cos x\cdot \cos y $ $ =1+2\cos x\cdot \cos y\cdot cosz $