Quantitative Aptitude Ques 2045

Question: A cone is cut at mid-point of its height by frustum parallel to its base. The ratio between the two parts of cone would be

Options:

A) 1:1

B) 1: 8

C) 1: 4

D) 1: 7

Show Answer

Answer:

Correct Answer: D

Solution:

  • Since, $ \Delta ADE\approx \Delta ABC $

$ \therefore $ $ \frac{AD}{AB}=\frac{DE}{BC}=\frac{1}{2} $

$ \therefore $ $ AD=\frac{AB}{2} $ and $ DE=\frac{BC}{2} $ Required Ratio
$ =\frac{Volumeofcone}{Volumeoffrustum} $ $ =\frac{\frac{1}{3}\times \pi {{(DE)}^{2}}\times AD}{\frac{1}{3}\pi BC^{2}\times AB-\frac{1}{3}\pi {{(DE)}^{2}}\times AD} $ $ =\frac{DE^{2}\times AD}{BC^{2}\times AB-DE^{2}\times AD} $ $ =\frac{\frac{BC^{2}}{4}\times \frac{AB}{2}}{BC^{2}\times AB-\frac{BC^{2}}{4}\times \frac{AB}{2}}=\frac{\frac{1}{8}}{1-\frac{1}{8}}=\frac{1}{7}=1:7 $