Quantitative Aptitude Ques 2037

Question: In a $ \Delta ABC, $ $ \angle A=80{}^\circ . $ If BD and CD are internal bisectors of $ \angle B $ and $ \angle C $ respectively, then $ \angle BDC $ is equal to

Options:

A) $ 100{}^\circ $

B) $ 110{}^\circ $

C) $ 120{}^\circ $

D) $ 130{}^\circ $

Show Answer

Answer:

Correct Answer: D

Solution:

  • Given, $ \angle BAC=80{}^\circ $ and BD and CD are the bisector of $ \angle B $ and $ \angle C, $ In $ \Delta ABC, $ $ \angle BAC+\angle B+\angle C=180{}^\circ $ [by angle sum property]

$ \Rightarrow $ $ 80{}^\circ +\angle B+\angle C=180{}^\circ $

$ \Rightarrow $ $ \angle B+\angle C=180{}^\circ -80{}^\circ $ $ \angle B+\angle C=100{}^\circ $ Divide by 2 on both the sides, we get
$ \frac{\angle B}{2}+\frac{\angle C}{2}=50{}^\circ $ i.e. $ \angle DBC+\angle DCB=50{}^\circ $ $ [ \because \frac{\angle B}{2}=\angle DBCand\frac{\angle C}{2}=\angle DCB ] $ Now, in $ \Delta BCO, $ $ \angle BDC+\angle DBC+\angle DCB=180{}^\circ $ [by angle sum property form Eq. (i)]

$ \Rightarrow $ $ \angle BDC+50{}^\circ =180{}^\circ $

$ \Rightarrow $ $ \angle BDC=180{}^\circ -50{}^\circ =130{}^\circ $ Alternate Method In $ \Delta ABC, $ and BD and CD are internal bisectors of $ \angle B $ and $ \angle C. $

$ \therefore $ $ \angle BDC=90{}^\circ +\frac{1}{2}\angle A $ [by results] $ =90{}^\circ +\frac{1}{2}\times 80{}^\circ =130{}^\circ $