Quantitative Aptitude Ques 2028
Question: Directions: In the following questions, two equations numbered I and II are given. You have to solve both the equations and give answer [IBPS RRB (Office Assistant) 2012]
I. $ 4x+3y={{(1600)}^{1/2}} $ II. $ 6x-5y={{(484)}^{1/2}} $
Options:
A) If $ x>y $
B) If $ x\ge y $
C) If $ x<y $
D) If $ x\le y $
E) If $ x=y $ or relationship cannot be established
Show Answer
Answer:
Correct Answer: A
Solution:
- I. $ 4x+3y={{(1600)}^{1/2}} $
$ \Rightarrow $ $ 4x+3y=40 $ … (i) II. $ 6x-5y={{(484)}^{1/2}} $ $ 6x-5y=22 $ … (ii) On multiplying Eq. (i) by 6 and Eq, (ii) by 4, we get $ y=\frac{152}{38}=4 $ On putting the value of y in Eq. (ii), we get $ 6x-5(4)=22 $
$ \Rightarrow $ $ 6x=22+20 $
$ \Rightarrow $ $ 6x=42 $
$ \therefore $ $ x=7 $ Hence, $ x>y $