Quantitative Aptitude Ques 2014
Question: What is the value of $ \frac{\sin \theta }{1+\cos \theta }+\frac{1+\cos \theta }{\sin \theta }? $
Options:
A) $ 2coses\theta $
B) $ 2\sec \theta $
C) $ \sec \theta $
D) $ cosec\theta $
Show Answer
Answer:
Correct Answer: A
Solution:
- Let $ f,(\theta )=\frac{\sin \theta }{1+\cos \theta }+\frac{1+\cos \theta }{\sin \theta } $
$ =\frac{{{\sin }^{2}}\theta +{{(1+\cos \theta )}^{2}}}{\sin \theta (1+\cos \theta )} $
$ =\frac{{{\sin }^{2}}\theta +1+{{\cos }^{2}}\theta +2\cos \theta }{\sin \theta (1+\cos \theta )} $
$ =\frac{2+2\cos \theta }{\sin \theta (1+\cos \theta )} $
$ =\frac{2(1+\cos \theta )}{\sin \theta (1+\cos \theta )} $
$ =2cosec\theta $