Question: Water flows at the rate of 10 m/min from a cylindrical pipe 5 mm in diameter. How long will it take to fill up a conical vessel whose diameter at the base is 40 cm and depth is 24 cm?
Options:
A) 51 min 12 s
B) 52 min 1 s
C) 48 min 15 s
D) 55 min
Show Answer
Answer:
Correct Answer: A
Solution:
- Given, radius of pipe $ \frac{5}{2\times 10}=\frac{5}{20}cm $
$ [\because 1cm=10mm] $
Height of pipe $ =1000cm $
Radius of vessel $ =20cm $ and height $ =24cm $
Volume of water flow in one minute from cylindrical pipe
$ =\pi {{( \frac{5}{20} )}^{2}}\times 1000=\frac{125}{2}\pi cm^{3} $
and volume of conical vessel
$ =\frac{1}{3}\pi {{(20)}^{2}}\times 24=3200\pi cm^{3} $
$ \therefore $ Required time $ =\frac{3200\pi \times 2}{125\pi }=51\frac{1}{5} $ or $ 51\min 12s $