Quantitative Aptitude Ques 1983

Question: A $ \Delta DEF $ is formed by joining the mid-points of the sides of $ \Delta ABC. $ Similarly, a $ \Delta PQR $ is formed by joining the mid-points of the sides of the $ \Delta DEF. $ If the sides of the $ \Delta PQR $ are of lengths 1, 2 and 3 units, then what is the perimeter of the $ \Delta ABC $ ?

Options:

A) 18 units

B) 24 units]

C) 48 units

D) 50 units

Show Answer

Answer:

Correct Answer: B

Solution:

  • Perimeter of $ \Delta PQR=1+2+3=6units $ Now, in $ \Delta DEF $ $ \frac{DQ}{DF}=\frac{1}{2}=\frac{PQ}{FE} $ So, $ 2PQ=FE $ Similarly, $ DF=2PR $ and $ DE=2QR $

$ \therefore $ Perimeter of $ \Delta DEF=2\times 6=12units $ Similarly, Perimeter of $ \Delta ABC=2\times $ Perimeter of $ \Delta DEF $ $ =2\times 12=24units $