Quantitative Aptitude Ques 1978
Question: In the given figure, O is the centre of a circle and $ \angle OAB=50{}^\circ . $ Then, $ \angle BOD $ is equal to
Options:
A) $ 130{}^\circ $
B) $ 50{}^\circ $
C) $ 100{}^\circ $
D) $ 80{}^\circ $
Show Answer
Answer:
Correct Answer: C
Solution:
- $ OA=OB $
$ \Rightarrow $ $ \angle OBA=\angle OAB=50{}^\circ $ [angle substend by same segments, i.e. radius] In $ \Delta OAB, $ $ \angle OAB+\angle OBA+\angle AOB=180{}^\circ $
$ \Rightarrow $ $ 50{}^\circ +50{}^\circ +\angle AOB=180{}^\circ $
$ \Rightarrow $ $ \angle AOB=80{}^\circ $
$ \therefore $ $ \angle BOD=(180{}^\circ =80{}^\circ )=100{}^\circ $