Quantitative Aptitude Ques 1977

Question: If $ \sec \theta +\tan \theta =2, $ then what is the value of $ \sec \theta ? $

Options:

A) $ \frac{3}{2} $

B) $ \sqrt{2} $

C) $ \frac{5}{2} $

D) $ \frac{5}{4} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • By trigonometric identity, $ {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 $

$ \Rightarrow $ $ (\sec \theta +\tan \theta )(\sec \theta -\tan \theta )=1 $

$ \Rightarrow $ $ \sec \theta -tan\theta =\frac{1}{2} $ … (i) and given, $ \sec \theta +\tan \theta =2 $ … (ii) On adding Eqs. (i) and (ii), we get $ 2\sec \theta =\frac{1}{2}+2 $

$ \therefore $ $ \sec \theta =\frac{5}{4} $