Quantitative Aptitude Ques 1949

Question: Smallest angle of a triangle is equal to two-third of the smallest angle of a quadrilateral. The ratio between the angles of the quadrilaterals is 3: 4: 5 : 6. Largest angle of the triangle is twice its smallest angle. What is the sum of second largest angle of the triangle and largest angle to the quadrilateral? [Bank of Baroda (PO) 2011]

Options:

A) $ 160{}^\circ $

B) $ 180{}^\circ $

C) $ 190{}^\circ $

D) $ 170{}^\circ $

E) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • Here/ratio among the angles of quadrilateral = 3: 4: 5: 6 Now, total sum of the angles of quadrilateral $ =360{}^\circ $

$ \Rightarrow $ $ (3+4+5+6)x=360{}^\circ $

$ \Rightarrow $ $ x=\frac{360{}^\circ }{18} $
$ \Rightarrow $ $ x=20{}^\circ $ Largest angle of quadrilateral $ =6\times 20{}^\circ =120{}^\circ $ Smallest angle of quadrilateral $ 3\times 20{}^\circ =60{}^\circ $ Now, smallest angle of triangle $ =\frac{2}{3}\times 60{}^\circ =40{}^\circ $

$ \therefore $ Largest angle of triangle $ =2\times 40{}^\circ =80{}^\circ $

$ \therefore $ Second largest angle of triangle $ =180{}^\circ -(80{}^\circ +40{}^\circ ) $ $ =180{}^\circ -120{}^\circ =60{}^\circ $

$ \therefore $ Required sum $ =120{}^\circ +60{}^\circ =180{}^\circ $