Quantitative Aptitude Ques 1939

Question: If $ \frac{{2^{n+4}}-2\cdot 2^{n}}{2\cdot {2^{n+3}}}+{2^{-3}}=x, $ then the value of x is

Options:

A) $ -{2^{n+1}}+\frac{1}{8} $

B) $ 1 $

C) $ {2^{n+1}} $

D) $ \frac{n}{8}-2^{n} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ \frac{{2^{n+4}}-2\cdot 2^{n}}{2\cdot {2^{n+3}}}+{2^{-3}}=x $

$ \Rightarrow $ $ x=\frac{{2^{n+4}}-{2^{n+1}}}{{2^{n+4}}}+{2^{-3}} $ $ =\frac{{2^{n+1}}(2^{3}-1)}{{2^{n+4}}}+\frac{1}{2^{3}} $ $ =\frac{8-1}{2^{3}}+\frac{1}{2^{3}}=\frac{7}{8}+\frac{1}{8}=1 $