Question: If A and B together can finish a piece of work in 20 days, B and C in 10 days and C and A in 12 days, then A, B, C jointly can finish the same work in
Options:
A) $ 4\frac{2}{7}days $
B) $ 30days $
C) $ 8\frac{4}{7}days $
D) $ \frac{7}{60}days $
Show Answer
Answer:
Correct Answer: C
Solution:
- According to the question,
(A + B)’s 1 day’s work $ =\frac{1}{20} $ … (i)
(B + C)’s 1 day’s work $ =\frac{1}{10} $ … (ii)
(C + A)’s 1 day’s work $ =\frac{1}{12} $ … (iii)
On adding Eqs. (i), (ii) and (iii), we get
$ A+B+B+C+C+A=\frac{1}{20}+\frac{1}{10}+\frac{1}{12} $
$ \Rightarrow $ $ 2,(A+B+C)’=\frac{3+6+5}{60}=\frac{14}{60}=\frac{7}{30} $
$ \therefore $ (A + B + C)’s 1 day’s work $ =\frac{7}{60} $
Hence, the work will be completed in $ \frac{60}{7}=8\frac{4}{7} $ days.