Question: The radius of the base of a right circular cone is increased by 15% keeping the height fixed. The volume of the cone will be increased by
Options:
A) 30%
B) 31%
C) 32.25%
D) 34.75%
Show Answer
Answer:
Correct Answer: C
Solution:
- Let the fixed height of a right circular cone be h and initial radius be r.
Then, initial volume of cone, $ V _1=\frac{1}{3}\pi r^{2}h $
After increasing 15% radius of a cone
$ =( r+\frac{3r}{20} )=\frac{23}{20}r $
New volume becomes,
$ V _2=\frac{1}{3}\pi {{( \frac{23}{20} )}^{2}}r^{2}h $
$ \therefore $ Increasing percentage $ =( \frac{V _2-V _1}{V _1} )\times 100 $
$ =\frac{\frac{1}{3}\pi r^{2}h}{\frac{1}{3}\pi r^{2}h}{ {{( \frac{23}{20} )}^{2}}-1 }\times 100 $
$ =( \frac{23}{20}+1 )( \frac{23}{20}-1 )\times 100 $
$ =\frac{43}{20}\times \frac{3}{20}\times 100=32.25 $ %