Quantitative Aptitude Ques 1920
Question: What should be added to the $ x(x+a)(x+2a) $ $ (x+3a), $ so that the sum be a perfect square?
Options:
A) $ a^{2} $
B) $ a^{4} $
C) $ a^{3} $
D) $ a^{6} $
Show Answer
Answer:
Correct Answer: B
Solution:
- $ x(x+a)(x+2a)(x+3a) $
$ =(x^{2}+ax)(x^{2}+5ax+6a^{2}) $
$ =x^{4}+ax^{3}+5ax^{3}+5a^{2}x^{2}+6a^{2}x^{2}+6a^{3}x $
$ =x^{4}+ax(x^{2}+5x^{2}+5ax+6ax+6a^{2}) $
$ =x^{4}+ax(6x^{2}+11ax+6a^{2}) $
(i)
For terms to be perfect square,
$ {{(x+y)}^{2}}{{(x+y)}^{2}} $
$ =(x^{2}+2xy+y^{2})(x^{2}+y^{2}+2xy) $
$ =x^{4}+2x^{3}y+x^{2}y^{2}+x^{2}y^{2}+2xy^{3}+y^{4} $
$ +2x^{3}y+4x^{2}y^{2}+2xy^{3} $
$ =x^{4}+xy(4x^{2}+6xy+4y^{2})+y^{4} $
(ii)
On comparing Eqs. (i) and (ii), $ y=a $
So, $ a^{4} $ must be added to make it a perfect square.