Quantitative Aptitude Ques 1902

Question: If $ x=3+2\sqrt{2}, $ then $ \frac{x^{6}+x^{4}+x^{2}+1}{x^{3}} $ is equal to

Options:

A) 216

B) 192

C) 198

D) 204

Show Answer

Answer:

Correct Answer: D

Solution:

  • Given, $ x=3+2\sqrt{2}=3+\sqrt{8} $ and $ \frac{1}{x}=\frac{1}{3+\sqrt{8}}\times \frac{3-\sqrt{8}}{3-\sqrt{8}} $ $ =\frac{3-\sqrt{8}}{9-8}=(3-\sqrt{8}) $ Now, $ \frac{x^{6}+x^{4}+x^{2}+1}{x^{3}}=\frac{x^{3}( x^{3}+x+\frac{1}{x}+\frac{1}{x^{3}} )}{x^{3}} $ $ =x(x^{2}+1)+\frac{1}{x}( \frac{1}{x^{2}}+1 ) $ … (i) Now, putting the values of x and $ \frac{1}{x} $ in Eq. (i), we get $ =(3+\sqrt{8})\times [{{(3+\sqrt{8})}^{2}}+1] $ $ +(3-\sqrt{8})[{{(3-\sqrt{8})}^{2}}+1] $ $ =(3+\sqrt{8})(9+8+6\sqrt{8}+1) $ $ +(3-\sqrt{8})(9+8-6\sqrt{8}+1) $ $ =(3+\sqrt{8})(18+6\sqrt{8})+(3-\sqrt{8})(18-6\sqrt{8}) $ $ =(3+\sqrt{8})6,(3+\sqrt{8})+(3-\sqrt{8})6(3-\sqrt{8}) $ $ =6{{(3+\sqrt{8})}^{2}}+6{{(3-\sqrt{8})}^{2}} $ $ =6[{{(3+\sqrt{8})}^{2}}+{{(3-\sqrt{8})}^{2}}] $ $ =6\times [9+8+6\sqrt{8}+9+8-6\sqrt{8}] $ $ =6\times 34=204 $