Quantitative Aptitude Ques 1887

Question: N is the foot of the perpendicular from a point P of a circle with radius 7 cm, on a diameter AB of the circle. If the length of the chord PB is 12 cm, then the distance of the point N from the point B is

Options:

A) $ 12\frac{2}{7}cm $

B) $ 3\frac{5}{7}cm $

C) $ 10\frac{2}{7}cm $

D) $ 6\frac{5}{7}cm $

Show Answer

Answer:

Correct Answer: C

Solution:

  • On joining AP, Now, $ \angle APB=90 $
    [angle in semi-circle] In $ \Delta APB, $ applying Pythagoras theorem
    $ AB^{2}=AP^{2}+PB^{2} $

$ \Rightarrow $ $ {{(14)}^{2}}=AP^{2}+{{(12)}^{2}} $

$ \Rightarrow $ $ AP^{2}=52 $ Now, let $ AN=xcm $ Then, $ NO=AO-AN=(7-x)cm $ In $ \Delta APN, $ $ AP^{2}=x^{2}+PN^{2} $
$ \Rightarrow $ $ PN^{2}=AP^{2}-x^{2} $

$ \Rightarrow $ $ PN^{2}=52-x^{2} $ … (i) In $ \Delta PNO, $ $ PO^{2}=PN^{2}+NO^{2} $ $ [\because PO=7,m] $

$ \Rightarrow $ $ {{(7)}^{2}}=PN^{2}+{{(7-x)}^{2}} $

$ \Rightarrow $ $ 49-{{(7-x)}^{2}}=PN^{2} $ … (ii)

$ \Rightarrow $ $ 44-(49-x^{2}-14x)=PN^{2} $ From Eqs. (i) and (ii), we get $ 52-x^{2}=49-(49-14x+x^{2}) $

$ \Rightarrow $ $ 52-x^{2}=49-49+14x-x^{2} $
$ \Rightarrow $ $ 14x=52 $

$ \therefore $ $ x=\frac{52}{14}=\frac{26}{7}cm $ Length of $ NO=7-\frac{26}{7}cm=\frac{49-26}{7}=\frac{23}{7}cm $ So, length of $ NB=NO+OB=7+\frac{23}{7} $ $ =\frac{49+23}{7}=\frac{72}{7}=10\frac{23}{7}cm $