Quantitative Aptitude Ques 1875

Question: A regular hexagon is inscribed in a circle of radius 5 cm. If x is the area inside the circle but outside the regular hexagon, then which one of the following is correct?

Options:

A) $ 13cm^{2}<x<15cm^{2} $

B) $ 15cm^{2}<x<17cm^{2} $

C) $ 17cm^{2}<x<19cm^{2} $

D) $ 19cm^{2}<x<21cm^{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • OB = OA = radius Also, $ \angle AOB=60{}^\circ $ $ ( \frac{360{}^\circ }{6}=60{}^\circ ) $ and $ \angle OAB=\angle OBA=60{}^\circ $

$ \therefore $ $ \Delta AOB $ is an equilateral triangle. Then, $ AB=5cm $

$ \therefore $ Area $ (x)= $ Area of circle $ - $ Area of hexagon $ =\pi r^{2}-\frac{3\sqrt{3}{{(a)}^{2}}}{2} $ $ =\frac{22}{7}\times {{(5)}^{2}}-\frac{3\sqrt{3}}{2}\times {{(5)}^{2}}[\because r=a=5] $ $ =78.57-64.95=13.62cm^{2} $