Question: 25 men can reap a field in 20 days. When should 15 men leave the work, if the whole field is to be reaped in $ 37\frac{1}{2} $ days after they leave the work?
Options:
A) After 5 days
B) After 10 days
C) After 9 days
D) After 7 days
E) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
- Let 15 men work for m days.
Work done in 1 days $ \frac{m}{20} $
Remaining work $ =( 1-\frac{m}{20} ) $
25 men’s 1 day’s work $ =\frac{1}{20} $
1 man’s 1 day’s work $ =\frac{1}{20}\times \frac{1}{25}=\frac{1}{500} $
10 men’s 1 day’s work $ =\frac{1}{500}\times 10=\frac{1}{50} $
10 men’s $ \frac{75}{2} $ days work $ =\frac{1}{50}\times \frac{75}{2}=\frac{75}{100}=\frac{3}{4} $
$ \therefore $ $ ( 1-\frac{m}{20} )=\frac{3}{4} $
$ \Rightarrow $ $ \frac{m}{20}=\frac{1}{4} $
$ \Rightarrow $ $ m=\frac{1}{4}\times 20=5 $
Clearly, 15 men leave after 5 days.