Question: Consider the following.
I. $ {{\sin }^{2}}1{}^\circ +{{\cos }^{2}}1{}^\circ =1 $
II. $ {{\sec }^{2}}33{}^\circ -{{\cot }^{2}}57{}^\circ =cose{c^{2}}37{}^\circ -{{\tan }^{2}}53{}^\circ $
Which of the above statement is/are correct?
Options:
A) Only I
B) Only II
C) Both I and II
D) Neither I nor II
Show Answer
Answer:
Correct Answer: A
Solution:
- We know that, $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ is true.
I. $ {{\sin }^{2}}1{}^\circ +{{\cos }^{2}}1{}^\circ =1 $ which is true.
II. $ {{\sec }^{2}}33{}^\circ -{{\cot }^{2}}57{}^\circ =cose{c^{2}}37{}^\circ -{{\tan }^{2}}53{}^\circ $
Now, $ {{\sec }^{2}}(90{}^\circ -57{}^\circ )=cose{c^{2}}57{}^\circ $
and $ {{\cot }^{2}}57{}^\circ ={{\cot }^{2}}(90{}^\circ -33{}^\circ )={{\tan }^{2}}33{}^\circ $
$ \therefore $ $ {{\sec }^{2}}33{}^\circ -{{\cot }^{2}}57{}^\circ =cose{c^{2}}57{}^\circ -{{\tan }^{2}}33{}^\circ $
II is not true.