Quantitative Aptitude Ques 1865

Question: Consider the following.

I. $ {{\sin }^{2}}1{}^\circ +{{\cos }^{2}}1{}^\circ =1 $ II. $ {{\sec }^{2}}33{}^\circ -{{\cot }^{2}}57{}^\circ =cose{c^{2}}37{}^\circ -{{\tan }^{2}}53{}^\circ $ Which of the above statement is/are correct?

Options:

A) Only I

B) Only II

C) Both I and II

D) Neither I nor II

Show Answer

Answer:

Correct Answer: A

Solution:

  • We know that, $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ is true. I. $ {{\sin }^{2}}1{}^\circ +{{\cos }^{2}}1{}^\circ =1 $ which is true. II. $ {{\sec }^{2}}33{}^\circ -{{\cot }^{2}}57{}^\circ =cose{c^{2}}37{}^\circ -{{\tan }^{2}}53{}^\circ $ Now, $ {{\sec }^{2}}(90{}^\circ -57{}^\circ )=cose{c^{2}}57{}^\circ $ and $ {{\cot }^{2}}57{}^\circ ={{\cot }^{2}}(90{}^\circ -33{}^\circ )={{\tan }^{2}}33{}^\circ $

$ \therefore $ $ {{\sec }^{2}}33{}^\circ -{{\cot }^{2}}57{}^\circ =cose{c^{2}}57{}^\circ -{{\tan }^{2}}33{}^\circ $ II is not true.