Quantitative Aptitude Ques 183

Question: Directions: In the given questions, two equations numbered I and II are given. Solve both the equations and mark the appropriate answer.

I. $ 3x^{2}-22x+7=0 $
II. $ y^{2}-20y+91=0 $

Options:

A) $ x>y $

B) $ x\ge y $

C) $ x<y $

D) $ x\le y $

E) Relationship between x and y cannot be determined

Show Answer

Answer:

Correct Answer: D

Solution:

  • I. $ 3x^{2}-22x+7=0 $

$ \Rightarrow $ $ 3x^{2}-x-21x+7=0 $

$ \Rightarrow $ $ x,(3x-1)-7,(3x-1)=0 $

$ \Rightarrow $ $ (3x-1)(x-7)=0 $
$ \Rightarrow $ $ x=\frac{1}{3}, $ 7 II. $ y^{2}-20y+91=0 $

$ \Rightarrow $ $ y^{2}-7y+13y+91=0 $

$ \Rightarrow $ $ y,(y-7)-13,(y-7)=0 $

$ \Rightarrow $ $ (y-13)(y-7)=0 $
$ \Rightarrow $ $ y=13, $ 7

$ \therefore $ $ y\ge x $