Quantitative Aptitude Ques 182

Question: Directions: In the given questions, two equations numbered I and II are given. Solve both the equations and mark the appropriate answer.

I. $ 15x^{2}-29x-14=0 $ II. $ 6y^{2}-5y-25=0 $

Options:

A) $ x>y $

B) $ x\ge y $

C) $ x<y $

D) $ x\le y $

E) Relationship between x and y cannot be determined

Show Answer

Answer:

Correct Answer: E

Solution:

  • I. $ 15x^{2}-29x-14=0 $ $ x _1=\frac{29+\sqrt{841+60\times 14}}{30} $ $ =\frac{29+41}{30}=\frac{70}{30}=\frac{7}{3} $ or $ x _2=\frac{29-\sqrt{1681}}{30} $

$ \Rightarrow $ $ x _2=\frac{29-41}{30}=\frac{-12}{30}=\frac{-,2}{5} $

$ \Rightarrow $ $ x=\frac{7}{3}, $ $ \frac{-,2}{5} $ II. $ 6y^{2}-5y-25=0 $ $ y _1=\frac{5+\sqrt{25-4\times 6\times -25}}{12} $ $ =\frac{5+\sqrt{625}}{12}=\frac{30}{12}=\frac{5}{2} $ or $ y _2=\frac{5-\sqrt{25-4\times 6\times -,25}}{12} $

$ \Rightarrow $ $ y _2=\frac{5-\sqrt{625}}{12}=\frac{-,20}{12}=\frac{-,5}{3} $

$ \Rightarrow $ $ y=\frac{5}{2}, $ $ \frac{-,5}{3} $
So, relationship between x and y cannot be determined.