I. $ 15x^{2}-29x-14=0 $ II. $ 6y^{2}-5y-25=0 $
A) $ x>y $
B) $ x\ge y $
C) $ x<y $
D) $ x\le y $
E) Relationship between x and y cannot be determined
Correct Answer: E
$ \Rightarrow $ $ x _2=\frac{29-41}{30}=\frac{-12}{30}=\frac{-,2}{5} $
$ \Rightarrow $ $ x=\frac{7}{3}, $ $ \frac{-,2}{5} $ II. $ 6y^{2}-5y-25=0 $ $ y _1=\frac{5+\sqrt{25-4\times 6\times -25}}{12} $ $ =\frac{5+\sqrt{625}}{12}=\frac{30}{12}=\frac{5}{2} $ or $ y _2=\frac{5-\sqrt{25-4\times 6\times -,25}}{12} $
$ \Rightarrow $ $ y _2=\frac{5-\sqrt{625}}{12}=\frac{-,20}{12}=\frac{-,5}{3} $
$ \Rightarrow $ $ y=\frac{5}{2}, $ $ \frac{-,5}{3} $
So, relationship between x and y cannot be determined.