Quantitative Aptitude Ques 1816

Question: Find the simplest value of $ 2\sqrt{50}+\sqrt{18}-\sqrt{72} $ (given, $ =\sqrt{2}=1.414 $ )

Options:

A) 9.898

B) 10.312

C) 8.484

D) 4.242

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ 2\sqrt{50}+\sqrt{18}-\sqrt{72} $ $ =2\sqrt{5\times 5\times 2}+\sqrt{3\times 3\times 2}-\sqrt{6\times 6\times 2} $ $ =2\times 5\sqrt{2}+3\sqrt{2}-6\sqrt{2} $ $ =10\sqrt{2}+3\sqrt{2}-6\sqrt{2} $ $ =13\sqrt{2}-6\sqrt{2}=7\sqrt{2} $ [given, $ \sqrt{2}=1.414 $ ] $ =7\times 1.414=9.898 $