Quantitative Aptitude Ques 1816
Question: Find the simplest value of $ 2\sqrt{50}+\sqrt{18}-\sqrt{72} $ (given, $ =\sqrt{2}=1.414 $ )
Options:
A) 9.898
B) 10.312
C) 8.484
D) 4.242
Show Answer
Answer:
Correct Answer: A
Solution:
- $ 2\sqrt{50}+\sqrt{18}-\sqrt{72} $
$ =2\sqrt{5\times 5\times 2}+\sqrt{3\times 3\times 2}-\sqrt{6\times 6\times 2} $
$ =2\times 5\sqrt{2}+3\sqrt{2}-6\sqrt{2} $
$ =10\sqrt{2}+3\sqrt{2}-6\sqrt{2} $
$ =13\sqrt{2}-6\sqrt{2}=7\sqrt{2} $ [given, $ \sqrt{2}=1.414 $ ]
$ =7\times 1.414=9.898 $