Quantitative Aptitude Ques 1809

Question: If $ x+\frac{1}{x}=3, $ then $ x^{5}+\frac{1}{x^{5}} $ is equal to

Options:

A) 123

B) 83

C) 92

D) 112

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ x+\frac{1}{x}=3 $ … (i) On squaring both sides, we get $ {{( x+\frac{1}{x} )}^{2}}={{(3)}^{2}} $
    $ \Rightarrow $ $ x^{2}+\frac{1}{x^{2}}+2=9 $

$ \Rightarrow $ $ x^{2}+\frac{1}{x^{2}}=7 $ … (ii) Again, squaring both sides, we get $ {{( x^{2}+\frac{1}{x^{2}} )}^{2}}={{(7)}^{2}} $
$ \Rightarrow $ $ x^{4}+\frac{1}{x^{4}}+2=49 $

$ \Rightarrow $ $ x^{4}+\frac{1}{x^{4}}=47 $ … (iii) On cubing both sides, we get $ {{( x+\frac{1}{x} )}^{3}}={{(3)}^{3}} $

$ \Rightarrow $ $ x^{3}+\frac{1}{x^{3}}+3( x+\frac{1}{x} )=27 $

$ \Rightarrow $ $ x^{3}+\frac{1}{x^{3}}+9=27 $ $ [ \because ( x+\frac{1}{x} )=3 ] $

$ \Rightarrow $ $ x^{3}+\frac{1}{x^{3}}=18 $ … (iv) On multiplying Eqs. (i) and (iii), we get $ ( x^{4}+\frac{1}{x^{4}} )( x+\frac{1}{x} )=47\times 3 $

$ \Rightarrow $ $ x^{5}+\frac{1}{x^{5}}+x^{3}+\frac{1}{x^{3}}=141 $

$ \Rightarrow $ $ x^{5}+\frac{1}{x^{5}}+18=141 $ [from Eq. (iv)]

$ \Rightarrow $ $ x^{5}+\frac{1}{x^{5}}=123 $