Quantitative Aptitude Ques 1782

Question: In the given figure, O is the centre of a circle, BOA is its diameter and the tangent at the point P meets BA extended at T. If $ \angle PBO=30{}^\circ , $ then $ \angle PTA $ is equal to

Options:

A) $ 60{}^\circ $

B) $ 30{}^\circ $

C) $ 15{}^\circ $

D) $ 45{}^\circ $

Show Answer

Answer:

Correct Answer: B

Solution:

  • Join $ OP, $ $ \angle BPA=90{}^\circ $ [angle in semi-circle] In $ \Delta PBA, $ $ \angle BPA+\angle PBA+\angle BAP=180{}^\circ $

$ \Rightarrow $ $ 90{}^\circ +30{}^\circ +\angle BAP=180{}^\circ $

$ \therefore $ $ \angle BAP=60{}^\circ $ But $ BAT $ is a straight angle,

$ \Rightarrow $ $ \angle BPA+\angle PAT=180{}^\circ $

$ \Rightarrow $ $ 60{}^\circ +\angle PAT=180{}^\circ $

$ \therefore $ $ \angle PAT=120{}^\circ $ $ OA=OP $ [radii]

$ \Rightarrow $ $ \angle OPA=\angle OAP=\angle BAP=60{}^\circ $ Now, $ \angle OPT=90{}^\circ $

$ \Rightarrow $ $ \angle OPA+\angle APT=90{}^\circ $ $ 60{}^\circ +\angle APT=90{}^\circ $

$ \therefore $ $ \angle APT=30{}^\circ $ In $ \Delta PAT, $ we have $ \angle PAT+\angle APT+\angle PTA=180{}^\circ $

$ \therefore $ $ \angle PTA=30{}^\circ $