Quantitative Aptitude Ques 1757

Question: Directions: In each of these questions, two equations I and II are given. You have to solve both the equations and give answer. [IBPS (PO) 2013]

I. $ 2x^{2}+3x-20=0 $
II. $ 2y^{2}+19y+44=0 $

Options:

A) If $ x<y $

B) If $ x>y $

C) If $ x=y $

D) If $ x\ge y $

E) If $ x\le y $ or no relationship can be established between x and y

Show Answer

Answer:

Correct Answer: D

Solution:

  • I. $ 2x^{2}+3x-20=0 $

$ \Rightarrow $ $ 2x^{2}+8x-5x-20=0 $

$ \Rightarrow $ $ 2x(x+4)-5(x+4)=0 $

$ \Rightarrow $ $ (2x-5)(x+4)=0 $

$ \therefore $ $ x=\frac{5}{2}, $ $ -4 $ II. $ 2y^{2}+19y+44=0 $

$ \Rightarrow $ $ 2y^{2}+11y+8y+44=0 $

$ \Rightarrow $ $ y(2y+11)+4(2y+11)=0 $

$ \Rightarrow $ $ (y+4)(2y+11)=0 $

$ \therefore $ $ y=-4, $ $ -\frac{11}{2} $ Hence, $ x\ge y $