A) $ 16\frac{2}{11}minpast $ 9
B) $ 16\frac{2}{11}minpast10 $
C) $ 16\frac{4}{11}minpast9 $
D) $ 16\frac{4}{11}minpast10 $
Correct Answer: C
$ \therefore $ The minute hand will have to gain $ (30-15)=15\min $ spaces over the hour hand. As we know, 55 min spaces are gained in 60 min.
$ \therefore $ 15 min will be gained in $ ( \frac{60}{55}\times 15 )\min =\frac{180}{11}=16\frac{4}{11}\min $ Hence, the hands will be in the same straight line but not together at $ 16\frac{4}{11} $ min past 9. Alternate Method Here, $ n=9 $ and $ n+1=10(n>6) $ The hands will be in the same straight line at $ (5n-30)\times \frac{2}{11}\min $ past n $ =(5\times 9-30)\frac{12}{11}\min past9 $ $ =\frac{15\times 12}{11}\min past9 $ $ =\frac{180}{11}\min \text{past 9} $ $ =16\frac{4}{11}\min past9 $