Quantitative Aptitude Ques 1745

Question: A committee of 5 persons is to be constituted from a group of 6 gents and 8 ladies. If the selection is made randomly, find the probability that there are 3 ladies and 2 gents in the committee

Options:

A) $ \frac{60}{149} $

B) $ \frac{60}{143} $

C) $ \frac{47}{140} $

D) $ \frac{42}{139} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • 5 person out of 14 can be selected in $ {}^{14}C _5 $ ways. 3 ladies out of 8 can be selected in $ {}^{8}C _3 $ ways. 2 gents out of 6 can be selected in $ {}^{6}C _2 $ ways.

$ \therefore $ Required probability $ =\frac{{}^{8}C _3\times {}^{6}C _2}{{}^{14}C _5} $ $ =\frac{8\times 7\times 6}{3\times 2\times 1}\times \frac{6\times 5}{2\times 1}\times \frac{5\times 4\times 3\times 2\times 1}{14\times 13\times 12\times 11\times 10} $ $ =\frac{60}{143} $