Quantitative Aptitude Ques 1729
Question: If $ \sin \theta \cos \theta =1/2, $ then what is $ {{\sin }^{6}}\theta +{{\cos }^{6}}\theta $ equal to?
Options:
A) 1
B) 2
C) 3
D) $ \frac{1}{4} $
Show Answer
Answer:
Correct Answer: D
Solution:
- Given, $ \sin \theta .\cos \theta =\frac{1}{2} $
$ {{\sin }^{6}}\theta +{{\cos }^{2}}\theta ={{({{\sin }^{2}}\theta )}^{3}}+{{({{\cos }^{2}}\theta )}^{3}} $
$ =({{\sin }^{2}}\theta +{{\cos }^{2}}\theta )({{\sin }^{4}}\theta +{{\cos }^{4}}\theta -{{\sin }^{2}}\theta {{\cos }^{2}}\theta ) $
$ [\because {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1] $
$ ={{({{\sin }^{2}}\theta +{{\cos }^{2}}\theta )}^{2}}-2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -{{\sin }^{2}}\theta {{\cos }^{2}}\theta $
$ =(1-3{{\sin }^{2}}\theta {{\cos }^{2}}\theta ) $ $ [ \because \sin \theta \cdot \cos \theta =\frac{1}{2} ] $
$ =1-3\times \frac{1}{4}=1-\frac{3}{4}=\frac{1}{4} $