Quantitative Aptitude Ques 1729

Question: If $ \sin \theta \cos \theta =1/2, $ then what is $ {{\sin }^{6}}\theta +{{\cos }^{6}}\theta $ equal to?

Options:

A) 1

B) 2

C) 3

D) $ \frac{1}{4} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • Given, $ \sin \theta .\cos \theta =\frac{1}{2} $ $ {{\sin }^{6}}\theta +{{\cos }^{2}}\theta ={{({{\sin }^{2}}\theta )}^{3}}+{{({{\cos }^{2}}\theta )}^{3}} $ $ =({{\sin }^{2}}\theta +{{\cos }^{2}}\theta )({{\sin }^{4}}\theta +{{\cos }^{4}}\theta -{{\sin }^{2}}\theta {{\cos }^{2}}\theta ) $ $ [\because {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1] $ $ ={{({{\sin }^{2}}\theta +{{\cos }^{2}}\theta )}^{2}}-2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -{{\sin }^{2}}\theta {{\cos }^{2}}\theta $ $ =(1-3{{\sin }^{2}}\theta {{\cos }^{2}}\theta ) $ $ [ \because \sin \theta \cdot \cos \theta =\frac{1}{2} ] $ $ =1-3\times \frac{1}{4}=1-\frac{3}{4}=\frac{1}{4} $