Question: If $ (sinx+\sin y)=a $ and $ (\cos x+\cos y)=b, $ what is the value of $ \sin x\sin y+\cos xcosy? $
Options:
A) $ a+b-ab $
B) $ a+b+ab $
C) $ a^{2}+b^{2}-2 $
D) $ \frac{a^{2}+b^{2}-2}{2} $
E) None of these
Show Answer
Answer:
Correct Answer: D
Solution:
- $ (\sin x+\sin y)=a $
and $ (\cos x+\cos y)=b $
On squaring both the equations, we get
$ {{(\sin x+\sin y)}^{2}}=a^{2} $
$ {{\sin }^{2}}x+{{\sin }^{2}}y+2\sin x\sin y=a^{2} $
(i)
and $ {{(\cos x+\cos y)}^{2}}=b^{2} $
$ {{\cos }^{2}}x+{{\cos }^{2}}y+2\cos x\cos y=b^{2} $ … (ii)
On adding Eqs. (i) and (ii), we get
$ ({{\sin }^{2}}x+{{\sin }^{2}}y+2\sin x\sin y) $
$ +({{\cos }^{2}}x+{{\cos }^{2}}y+2\cos x\cos y)=a^{2}+b^{2} $
$ \Rightarrow $ $ {{\sin }^{2}}x+{{\cos }^{2}}x+{{\sin }^{2}}y+{{\cos }^{2}}y $
$ +2(\sin x\sin y+\cos x\cos y)=a^{2}+b^{2} $
$ \Rightarrow $ $ 1+1+2(\sin x\sin y+\cos x\cos y)=a^{2}+b^{2} $
$ \therefore $ $ \sin x\sin y+\cos x\cos y=\frac{a^{2}+b^{2}-2}{2} $